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When an e lec t r ic  d i scharge  takes place in a liquid, the d i scharge  channel rapidly expands, a p roces s  acompanied 
by the radiation of a compress ion  wave. If the ra te  of expansion of the channel approaches the speed of sound, a shock 
wave is formed at the leading front of the radiated compress ion  pulse. 

The cha rac t e r i s t i c s  of the channel-expansion p r o c e s s  and the p a r a m e t e r s  of the shock wave can be determined 
f rom the given conditions of energy re l ease  in the d i scharge  channel. For  s implici ty we will consider  a d ischarge  for 
which the width of the d i scharge  gap is smal l  as compared  with the cha rac te r i s t i c  radius of the channel, which makes 
it possible  to a ssume that the channel is spher ical .  The motion of the liquid caused by the expansion of the channel will 
be assumed isentropic ,  which makes it possible  to use the equation of state in the form: 

p = A (p/  po) n -  B ,  (1) 

where  p is the liquid density,  p is the p r e s s u r e ,  A = 3001 atm B = 3000 atm n = 7 for water .  

In calculating the hydrodynamic  cha rac t e r i s t i c s  of the d i scharge  it is possible  to distinguish two success ive ly  
solvable problems:  1) calculat ion of the expansion of the channel for a given r eg ime  of energy re lease ,  and 2) 
de terminat ion  of the shock-wave radia t ion by a channel expanding according to a known law. 

The channel expansion p r o c e s s  can be approximately descr ibed  by the sys tem of equations 

d V  . i d ( P V )  
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The f i r s t  equation expresses  the law of conservat ion of energy in the d i scharge  [1,2], while the second and third 
may be regarded  as re la t ions  giving the p r e s s u r e  at the sur face  of the expanding sphere,  equal to the p r e s s u r e  inside 
channel P, as a function of the channel radius  R and its der ivat ive R" = U and R" . 

Equations (3) and (4) follow f rom the hydrodynamic equations and the equation of state when the approximations 
of the Kirkwood-Bethe theory  [3,4],  proposed for descr ib ing the propagat ion of shock waves in a liquid, a re  employed. 

The remaining notation is as follows: V is the channel volume, 3~ is the effective adiabatic exponent for p lasma;  
for  d i scharges  in water  [1] 7 = 1.2, N(~) is the power r e l eased  in the channel, c is the local speed of sound, H is the 
enthalpy. The initial conditions a re  selected as follows R - -  0, R ~ --* 0 as T ~ 0. In par t ice  it is sufficient to ass ign 
values of R and U at T - 0 sufficiently smal l  when compared  to the charac te r i s t i c  values of those quantities. 

Numer ica l  in tergra t ion  of (2)-(4) makes  it possible  to de termine  the t ime dependence of the channel radius,  the 
ra te  of expansion, the p r e s s u r e  in the channel, and the values of the function G(T) = R( H + U 2/2) on the surface  of the 
expanding sphere.  The determinat ion of this function --the s tar t ing point in the solution of the propagat ion problem in 
the Kirkwood-Bethe theo ry - -p resupposes  that the values of the function G =r (h  + u2/2) (r is the radial  coordinate,  h 
the specific enthalpy, and u is the hydrodynamic veloci ty  at the point r) r emain  constanta t  points t ravel ing with 
velocity c + u, which makes it possible  to de termine  this function at any point in space f rom the known values of G at 
(T) at the sur face  of the sphere.  In p rac t i ce  it is more  convenient to calculate the inverse  of the function G(tr) f rom the 

equations [4] 
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f f  = u ( R ,  % ~ u =  1 " -  rco~ C , . (5) 

In small  per turbat ions  (flu <<1) (5) goes over  into the solution t - (r - R ) / c  0 = T(G) corresponding to the 
approximation of l inear acoust ics .  

F r o m  the known values of the function G(t, r) it is easy to de termine  the hydrodynamic velocity and the p r e s s u r e  
p [4], 

c 2 n - - t  { n + l  \%]2n/(n--1) 
p := A - -  + ~ 1 . + - - -  G ~ | b' (6) 

and easy to find the profi le  of the compress ion  wave at any point in space.  

At a sufficient distance from the discharge the profile of the compression wave may become mu!tivalued, which, 
as is known [5], indicates the formation of shock fronts. Their position and the magnitude of the discontinuity are 
determined from the solution obtained using the Rankine--Hugoniot relation, which in weak shocks reduces to the 
simple "equal area" rule [5]. 

At considerable distances from the discharge, where nonlinear effects lead to intense distortion of the original 
wave profile, the shock wave takes a form that depends only slightly on the detailed properties of the function G(~-) 
at the channel surface. This makes it possible to obtain simple asymptotic expression describing shock wave remote 
from the discharge which, in particular, reveal the nature of its attenuation. Two cases are possible. If the rate of 
expansion of the channel is equal to or exceed the speed of sound, shock waves develop in the immediate vicinity of 
the discharge. In this case it is possible to use the asymptotic expressions of the theory developed by Kirkwood and 
Bethe for describing the shock waves due to an explosion and applicable at a considerable distance from the 

explosion center [3]. In accordance with this theory, the shape of the wave is assumed approximately exponential: 

P = Pm exp --0-- ' P "  r ' 6 m  = ~'Co , 

~ =2i1+ 1 ~],~Z/0: 
0 . ~  2~G~ In 

CO" /-~0 " (7) 

G o is the maximum value of the function G(T) on the surface of the sphere, x is a quantity characterizing the 
attenuation of the shock wave, R 0 and T are characteristic values of the channel radius and its expansion time. 
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Equation (7) are applicable if the following conditions are satisfied: 

2~c0/Tc~0 > t, in (~ / R0) ~ 1. (8) 

The f i r s t  of these conditions expresses  the condition for  format ion of a discontinuity close to the d ischarge ,  while 
the second makes it possible  to employ the asymptot ic  formulas  of the Kirkwood-Bethe theory.  Clearly,  at l a rge  
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dis tances  the shock wave p a r a m e t e r s  a re  determined simply by the maximum value of the function Go, if the 
cha rac te r i s t i c  values,  R 0 and T, are  known. 

In turn, for rough es t imates ,  on the basis  of Eq. (3) it is possible  to assume that Go ~ % R,oT-~ , and the 
quantity R 0 can be found f rom [2] 

R% = 3 (y - -  i)  T 2 E / 4 ~ p o ,  (9) 

where  P0 is the equil ibrium densi ty of the liquid. 

Thus, it is possible  to find the o rde r  of magnitude for  the p r e s s u r e  in the shock wave radiated by an intense 
d i scharge  f rom T the given durat ion of the d ischarge  and E the total energy re leased  in the channel 

Using the above es t imate  for  co ~ 3n%/2T 2 and Eq. (9), we can rewr i te  the f i r s t  inequality of (8) as follows: 

2# C,, (R0~ a /E/Ro3\% [ E \% 
,= 6 \coT] =: / ~ )  "~"/poc~) > I .  (10) 

Hence it follows that the possibi l i ty  for  format ion  of a shock wave depends on the rat io of the energy density in 
the channel (proportional to the channel p ressure )  to the cha rac te r i s t i c  p r e s s u r e  in the liquid P0C20 . 

If the ra te  of expansion for  the channel is less  than the speed of sound, which is the case  when instead of the 
f i r s t  inequality of (8) the opposite inequality 

213Go / c~oT < I (11) 

is satisfied,  then shock waves may be formed at a cer ta in  distance f rom the d ischarge  as a resu l t  of accumulat ing 
nonlinear effects.  Taking this into account, in the approximation of nonlinear acoust ics  [6], we are  led to the following 

express ion  for  G m 

~Gm ~ 5 GoT j-, r "]--t poG m r c o t  
co 2 --- 4 L m~ol ' P,~- r at l n ~ > ~ o  (12) 

If this condition is satisfied the shock wave is formed at a distance r.  

Going over  to numerica l  integrat ion of (2)-(4), we note that on the basis  of the experimental  data (see, for 
example, [1] for the t ime dependence of the channel-power  input we can take the " t r iangular"  approximation 

N(T)= --kT-~-kT (1/..T ~ ' r -~T)  
0 (T<~:) 

(13) 

Here,  T is the durat ion of the d i scharge  (for a periodic d i scharge  it may be assumed that each period has its own 

"tr iangle" in the power graph). 

It is convenient to go over  to the d imensionless  var iables  

t R c p7 '~ 
~ : 7 '  Y :-fro '  ~ : : :W'  ~=pO~'  

H T  ~ Ro 
~1 ~ ito 2 ~ M - - c o T  

where  T is the duration of the d ischarge ,  and R 0 is given by Eq. (9). 

In the new var iables  (2)-(4) take the form: 

d~ "v(x) ~ dy d2y I -~ My ' / z  q , . .  i d~l 
d x = 4  ~-'7~ - 3 ~ ;  y dx '  d x 2 - -  i - -  My ' / z  y "y lvi Td~x 

i 

3 i -- My' /3z  y'"- 
2 t - - M y ' l z  y ' 

(14) 
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Here  ~(x) is the d imensionless  power: 

t i (0 ~ x ~<1/~') v(.~:)= 1-- (1/2~<z~<1) 
(t < z) 

Equations (14) were  integrated numer ica l ly  on a computer  with the initial conditions y(0) =Y0 and y. (0) = 0, 
af ter  which the re la t ions  for  p(t) at var ious  dis tances  were  found f rom Eqs. (5) and (6). 

The posit ion of the shock front and the amplitude of the shock wave were  determined graphical ly  f rom the 
"equal a rea"  rule.  

The calculated p r e s s u r e  prof i les  in the compress ion  wave a re  shown in Figs .  1 - 4  (curve 1), which also give the 
available exper imental  resu l t s  [2, 8] (curve 2). 

F igure  1 shows the p r e s s u r e  profi le  at a point 1 m f rom the d ischarge  gap for a d ischarge  with pa ramete r s :  
energy re leased  E = 3 �9 104 J,  durat ion of d ischarge  T = 9 psec.  

F igure  2 and 3 show the re la t ion for  p(t) at points 1 and 10 m, respect ive ly ,  f rom a d ischarge  with the 
p a r a m e t e r s  E = 2 .5  " 103 J and T --40 #sec [8]; in const ruct ing the graphs in Fig.  2 the calculated and shock fronts  
determined experimental ly  were  combined. 

F igure  4 shows the compress ion  wave profi le  at a dis tance of . 5m f rom the d ischarge  with the pa rame te r s  
E = 1020 J and T = 50 #sec investigated in [2]. As distinct f rom the previous two d ischarges ,  in this case almost  no 
shock waves a re  formed.  Curve 3 in Fig.  4 r ep resen t s  the re la t ion for p(t) obtained in the approximation of l inear 
acoustic s. 

The authors thank Yu. P. Raizer ,  V. A. Akulichev, Yu. Ya. Bogulslavskii  and N. G. Kozhelupov for their  
in te res t  and advice. 
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